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Time evolution of the Partridge-Barton model
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The time evolution of the Partridge-Barton model in the presence of the pleiotropic constraint and delete-
rious somatic mutations is exactly solved for arbitrary fecundity in the context of a matricial formalism.
Analytical expressions for the time dependence of the mean survival probabilities are derived. Using the fact
that the asymptotic behavior for large timet is controlled by the largest matrix eigenvalue, we obtain the steady
state values for the mean survival probabilities and the Malthusian growth exponent. The mean age of the
population exhibits at21 power law decayment. Some Monte Carlo simulations were also performed and they
corroborated our theoretical results.

PACS number~s!: 87.10.1e, 87.23.Kg, 87.23.Cc
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I. INTRODUCTION

Early in life we perceive that everything around us, ina
mate objects, animals, and human beings undergo a va
of changes that accompany the passage of time. Everyt
suffers a progressive deterioration with time. This pheno
enon is called aging or senescence and it is characterize
a decline in the physical capabilities of the individuals. Se
eral theories~see@1# and references therein! have been sug
gested to explain why there is senescence, when it occ
and what are the biological processes responsible for it. U
ally, these theories are divided into three classes: bioche
cal, evolutionary, and telomeric. The first invokes dama
on DNA, cells, tissues, and organs and connect senesc
with imperfections of the biochemical processes. One kind
this biochemical imperfection is the presence of free radic
that can cause death of the cells or may even lead to ca
@2#. The evolutionary theory@3,4#, on the other hand, ex
plains senescence as a competitive result of the reprodu
rate, mutation, heredity, and natural selection. In the te
mere hypothesis@5#, senescence depends on the cumula
number of cell divisions. The replication of a normal cell
followed by a telomeric shortening. This acts as a count
mechanism which controls the number of divisions.

Evolutionary theories of aging are hypothetico-deduct
in character, not inductive. They do not contain any spec
genetic parameter, but only physiological factors and c
straints imposed by the environment. There are two kin
the optimality theory and the mutational theory. In the op
mality theory@6#, senescence is a result of searching an
timal life history where survival late in life is sacrificed fo
the sake of early reproduction. For the mutational the
@4,7#, on the other hand, aging is a process that comes f
a balance between Darwinian selection and the accumula
of mutations. The natural selection efficiency to remo
harmful alleles in a population depends on when in
lifespan they come to express. Alleles responsible for le
diseases that express late in life escape from the natura
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lection and accumulate in the population, provoking sen
cence. Nevertheless, if the natural selection is too strong
deleterious mutations might not accumulate in the popula
and the eternal youth could be reached. An evolution
model with such characteristics was recently studied
solved by Onody and de Medeiros@8#.

A simple evolutionary model of aging is the Partridg
Barton model@9#. It was introduced to illustrate the optima
ity theories of aging. Its principal feature is the inclusion
the antagonistic balance mechanism@10#. This mechanism
arises out from processes that enhance the lifespan ear
life, but have deleterious effects latter.

In this work we find an exact solution for the whole d
namics of the Partridge-Barton model. When only delete
ous somatic mutations and pleiotropy are present the t
evolution of the model can be formulated in a matricial for
Explicit analytic expressions can be written for the me
survival probabilities and the growth rate. For large timet,
the system behavior is dominated by the largest matrix
genvalue. The existent integrals can be solved by the sa
point approximation, allowing us to determine precisely t
steady state values of the survival probabilities. A time e
pansion for the population’s mean age shows that it c
verges to a constant value according to at21 power law, a
result that was first obtained by Ray@11#. All the results
were confirmed by some Monte Carlo simulations that
performed.

II. PARTRIDGE-BARTON MODEL

In the Partridge-Barton model there are only three ag
The population consists of babies~age50!, juveniles ~age
51!, and adults~age52!. The survival probabilities from
infancy to juvenile isJ1 and from juvenile to adulthood isJ2.
Reproduction is permitted only to juveniles and adults, w
ratesm1 andm2, respectively. Babies do not have offsprin
and adults are eliminated from the population after reprod
tion.

The population grows at a steady rater. The Malthusian
growth exponentr is related to the other parameters of t
model through a discrete version of the Euler-Lotka equat
@12#
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PRE 61 5665TIME EVOLUTION OF THE PARTRIDGE-BARTON MODEL
m1J1e2r1m2J1J2e22r51. ~1!

The antagonistic pleiotropy@10# arises when the sam
gene is responsible for multiple effects. For example, ge
enhancing early survival by the promotion of bone harden
might reduce later survival by promoting arterial hardenin
Partridge and Barton implemented the basic ideas of the
tagonistic pleiotropy by adopting the constraint,J11J2

x51,
between the survival probabilitiesJ1 andJ2. The parameterx
is a real positive number whose value depends on the kin
population we are dealing with. The pleiotropic conditio
states that it is impossible to sustain simultaneously b
high juvenile and adult survivals. For the particular case
which m15m251 and x54, Partridge and Barton foun
J150.935 andJ250.505 as the values that maximize th
growth rater.

Also the action of deleterious or helpful mutations can
added to the model. Using Monte Carlo simulations, Stau
@13# studied the case in which the pleiotropic constraintJ1

1J2
451 is accompanied by random somatic mutations.

results clearly show that the survival probabilitiesJ1 andJ2
move rapidly to stationary values withJ1.J2. This fact
means that the model exhibits senescence, in the sense
the adult survival is lower than the juvenile. In the absen
of mutations,J1 and J2 tend towards 0.935 and 0.505
accord with the Partridge-Barton conclusions. However, i
not clear how the system drives itself towards these opti
values.

III. ANALYTICAL SOLUTION

In this section we obtain the exact time solution of t
Partridge-Barton model in the presence of pleiotropy a
somatic mutations. LetNi(Ji ,t) be the number of individuals
at agei ( i 50,1,2) with survival probability betweenJi and
Ji1dJi at timet. We choose, as the initial condition, a pop
lation with the profile

Ni~Ji ,0!5N0d i ,0 , ~2!

that is, in t50 there are onlyN0 babies with the surviva
probabilitiesJ0 uniformly distributed in the interval@0,1#.

At time t, all babies are equally submitted to somatic a
deleterious mutations with strengtha (a,1). Their sur-
vival probabilitiesJ0 are changed toJ15aJ0. Subsequently,
all these babies pass through natural selection in a such
that, on average, the number of juveniles with survival pr
ability J1 at the instantt11 is given by

N1~J1 ,t11!5J1N0~J0 ,t !. ~3!

Since the mutation is restricted to besomatic, each one of the
N1(J1 ,t11) juveniles will give birth to exactlym1 offspring
with survival probabilityJ0.

Now, the probability with which a juvenile will reach
adulthood must take into account the antagonistic pleiotr
and the somatic deleterious mutations. As pleiotropy is
affected by the somatic mutations, a juvenile with surviv
probabilityJ1 ~formerly, a baby with survival probabilityJ0)
will change its survival probability to (12J0)1/x, wherex is
a real positive number and a measurement of the pleiotr
constraint. Under the action of a deleterious somatic mu
s
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tion, described by a parameterb (b,1, fixed!, the new sur-
vival probability can be written asJ25b(12J0)1/x. By sub-
mitting all juveniles to natural selection we get, on avera
the number of adults with survival probabilityJ2, which is
given by

N2~J2 ,t11!5J2N1~J1 ,t !. ~4!

Each one of these adults will generatem2 descendants with
survival probabilityJ0 since the mutations arenot inherited.

In general, the number of babies with survival probabil
J0 is given by

N0~J0 ,t !5m1N1~J1 ,t !1m2N2~J2 ,t ! for t>1, ~5!

whereJ15aJ0 andJ25b(12J0)1/x. If we substitute Eq.~5!
into Eq. ~3! we can write the following recursive matricia
equation:

S N1~J1 ,t11!

N2~J2 ,t11!
D 5AS N1~J1 ,t !

N2~J2 ,t ! D , ~6!

whereA is the matrix

A5S m1J1 m2J1

J2 0 D .

Iterating the equation above and using the initial conditio
we get fort>2

S N1~J1 ,t !

N2~J2 ,t ! D 5J1N0~J0,0!At22S m1J1

J2
D , ~7!

with A0 meaning the identity matrix.
The complete dynamics of the Partridge-Barton mo

can be obtained by diagonalizing the matrixA. We have,
explicitly ~for t>2)

N1~J1 ,t !5
J1N0~J0,0!

Am1
2J1

214m2J1J2

@m1J1~l1
t212l2

t21!

1m2J1J2~l1
t222l2

t22!#, ~8!

N2~J2 ,t !5
J1N0~J0,0!

Am1
2J1

214m2J1J2

@m1J1J2~l1
t222l2

t22!

1m2J1J2
2~l1

t232l2
t23!#, ~9!

where

l65
m1J16Am1

2J1
214m2J1J2

2
~10!

are the eigenvalues of the matrixA, J15aJ0, and J2
5b(12J0)1/x. Let us point out that the time evolution o
the babies distributionN0(J0 ,t) can be calculated using
Eqs.~5!, ~8!, and~9!. Having the expressions above, we c
determine the evolution of many other quantities like t
total number of individuals at agei, Ni(t)5*0

1Ni(Ji ,t)dJi or
their mean survival probabilities
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FIG. 1. The continuous lines
correspond to the analytical solu
tions and the square symbols t
the Monte Carlo simulations. We
used a50.82, b50.67, x54,
m15m251, and N054000. The

steady state values areJ̃150.77

and J̃250.33. There is senes
cence, i.e.,J2,J1.
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^Ji&~ t !5*0
1JiNi~Ji ,t !dJi /*0

1Ni~Ji ,t !dJi .

The giveninput parametersare the initial populationN0, the
birth rates (m1 andm2), the mutation strengths (a andb),
and the pleiotropic constraint (x).

IV. ASYMPTOTIC LIMIT

Before taking the asymptotic limit, we observe thatl1 is
the largest eigenvalue forall possible values of the inpu
parameters. Once these parameters are fixed andJ25b(1
2J1 /a)1/x, l1 is in the last instance a function ofJ1. From
Eq. ~8! we have asymptotically

N1~J1 ,t !'et ln[l1(J1)] . ~11!

By integrating inJ1 the expression above, we can get t
total number of juvenilesN1(t). It is convenient to change
the integration variableJ1 for a new variabley ~a monotoni-
cally increasing function ofJ1), y52cot(pJ1), such that

N1~ t !'E
2`

` et ln[l1(y)]

p~11y2!
dy. ~12!

For large timet, this integral can be evaluated by th
saddle point approximation. We thus obtain

N1~ t !5A~ ỹ!
et ln[l1(y)]

At
, ~13!

whereỹ is the value that maximizes the eigenvaluel1 and
A( ỹ)5Ap/(21/2l1)(d2l1 /dy2)uy5 ỹ.

In the original paper of Partridge and Barton, the optim
zation process was achieved by a direct~and not well ex-
plained! maximization of the growth rate. Here, in our fo
malism, it is a simple and a natural consequence of tak
the asymptotic time limit in the exact evolving equation
Further, the growth rate or the Malthusian exponent is s
ply given by ln@l1(ỹ)#.
-

g
.
-

To have the deepest insight in the dynamics, let us de
mine the probability densityP1(J1 ,t) of finding a juvenile at
time t with survival probability betweenJ1 andJ11dJ1. It is
given by

P1~J1 ,t !5
N1~J1 ,t !

E
0

1

N1~J1 ,t !dJ1

5
N1~J1 ,t !

N1~ t !

'Atet ln[l1(J1)/l1(J1
˜ )] ~14!

where we have used Eqs.~11! and ~13! and ỹ52cot(pJ̃1).
Clearly, at the asymptotic limit, the distribution probabili
P1(J1 ,t→`) approaches the Dirac delta functiond(J1

2 J̃1) and the mean survival probability at age 1 is simp
given by ^J1&5 J̃1. Similar results can be obtained for th
ages 0 and 2. Another interesting quantity that can be ca
lated is the population mean age^A&(t) defined aŝ A&(t)
5( i 50

2 i Ni(t)/( i 50
2 Ni(t). It is straightforward to show that

^A&~ t !5
g12

g~11m1!1~11m2!

1H 2g~11m1!1g~11m2!

2@g~11m1!1~11m2!#2J t211O~ t22!,

~15!

where g5l1( J̃1)/ J̃2 with J̃25b(12 J̃1/a)1/x. So we re-
derive, in a quite simple way, the power law decayment fi
found by Ray@11#.

V. DISCUSSION

We solved exactly in this paper the Partridge-Bart
model under the action of arbitrary pleiotropic constrain
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and deleterious somatic mutations. Through a matricial
malism we were able to predict the complete time evolut
of the population. We derived analytic expressions for
time dependence of the mean survival probabilities and
Malthusian exponent. Since for large timet the system be-
havior is controlled by the largest eigenvalue, it was poss
to obtain the steady state values of the survival probabili
and to demonstrate, in a simple way, that the popula
mean age has a power lawt21 decayment to its final constan
value.

For comparison with our analytical results, we also p
formed some Monte Carlo simulations. In these simulatio
the natural selection is implemented by discarding any in
vidual with survival probability smaller than a random num
ber ~generated from a uniform distribution!. The deleterious
somatic mutations and the antagonic pleiotropy can be ea
incorporated into the computer program. It is more diffic
to avoid an explosion of the computer’s memory due to
cs
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unlimited growth of the population. To take this proble
into account, we resort to the Verhulst factor@12# which is
commonly used in such circumstances.

In Fig. 1 we put together the analytical solution and t
Monte Carlo result. The exact solution was plotted by inse
ing Eqs.~8!, ~9!, and~10! into the expressions for the mea
survival probabilitieŝ Ji&(t) and by integrating them using
the software Maple@14#. We conclude that the Monte Carl
simulations confirm the theoretical results very well.

Finally, let us point out that, unfortunately, the techniq
developed here cannot be applied to the case in which
tations are hereditary. The main reason for this comes fr
the fact that Eq.~5! is no longer valid.
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